108 research outputs found

    Changes of bivalent chromatin coincide with increased expression of developmental genes in cancer

    Get PDF
    Bivalent (poised or paused) chromatin comprises activating and repressing histone modifications at the same location. This combination of epigenetic marks at promoter or enhancer regions keeps genes expressed at low levels but poised for rapid activation. Typically, DNA at bivalent promoters is only lowly methylated in normal cells, but frequently shows elevated methylation levels in cancer samples. Here, we developed a universal classifier built from chromatin data that can identify cancer samples solely from hypermethylation of bivalent chromatin. Tested on over 7,000 DNA methylation data sets from several cancer types, it reaches an AUC of 0.92. Although higher levels of DNA methylation are often associated with transcriptional silencing, counter-intuitive positive statistical dependencies between DNA methylation and expression levels have been recently reported for two cancer types. Here, we re-analyze combined expression and DNA methylation data sets, comprising over 5,000 samples, and demonstrate that the conjunction of hypermethylation of bivalent chromatin and up-regulation of the corresponding genes is a general phenomenon in cancer. This up-regulation affects many developmental genes and transcription factors, including dozens of homeobox genes and other genes implicated in cancer. Thus, we reason that the disturbance of bivalent chromatin may be intimately linked to tumorigenesis

    The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura

    Get PDF
    Abstract We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both \u3b1- and \u3b2-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the \u3b2-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis

    Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements

    Get PDF
    Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit ‘bizarre’ secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading ‘pseudogenes’, even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders

    An Introduction to RNA Databases

    Full text link
    We present an introduction to RNA databases. The history and technology behind RNA databases is briefly discussed. We examine differing methods of data collection and curation, and discuss their impact on both the scope and accuracy of the resulting databases. Finally, we demonstrate these principals through detailed examination of four leading RNA databases: Noncode, miRBase, Rfam, and SILVA.Comment: 27 pages, 10 figures, 1 tables. Submitted as a chapter for "An introduction to RNA bioinformatics" to be published by "Methods in Molecular Biology

    Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

    Get PDF
    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function—it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological relevance was unclear. Here we present a comprehensive analysis of pseudouridylation in Saccharomyces cerevisiae and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as many novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease.American Cancer Society (Robbie Sue Mudd Kidney Cancer Research Scholar Grant RSG-13-396-01-RMC)National Institutes of Health (U.S.) (GM094303)National Institutes of Health (U.S.) (GM081399)American Cancer Society. New England Division (Ellison Foundation Postdoctoral Fellowship)American Cancer Society (Postdoctoral Fellowship PF-13-319-01-RMC)National Institutes of Health (U.S.) (Pre-doctoral Training Grant T32GM007287

    DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control

    Get PDF
    Although Burkitt lymphomas and follicular lymphomas both have features of germinal center B cells, they are biologically and clinically quite distinct. Here we performed whole-genome bisulfite, genome and transcriptome sequencing in 13 IG-MYC translocation-positive Burkitt lymphoma, nine BCL2 translocation-positive follicular lymphoma and four normal germinal center B cell samples. Comparison of Burkitt and follicular lymphoma samples showed differential methylation of intragenic regions that strongly correlated with expression of associated genes, for example, genes active in germinal center dark-zone and light-zone B cells. Integrative pathway analyses of regions differentially methylated in Burkitt and follicular lymphomas implicated DNA methylation as cooperating with somatic mutation of sphingosine phosphate signaling, as well as the TCF3-ID3 and SWI/SNF complexes, in a large fraction of Burkitt lymphomas. Taken together, our results demonstrate a tight connection between somatic mutation, DNA methylation and transcriptional control in key B cell pathways deregulated differentially in Burkitt lymphoma and other germinal center B cell lymphomas

    Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing

    Get PDF
    Abstract Background Melon (Cucumis melo L.) is a commercially important fruit crop that is cultivated worldwide. The melon research community has recently benefited from the determination of a complete draft genome sequence and the development of associated genomic tools, which have allowed us to focus on small RNAs (sRNAs). These are short, non-coding RNAs 21-24 nucleotides in length with diverse physiological roles. In plants, they regulate gene expression and heterochromatin assembly, and control protection against virus infection. Much remains to be learned about the role of sRNAs in melon. Results We constructed 10 sRNA libraries from two stages of developing ovaries, fruits and photosynthetic cotyledons infected with viruses, and carried out high-throughput pyrosequencing. We catalogued and analysed the melon sRNAs, resulting in the identification of 26 known miRNA families (many conserved with other species), the prediction of 84 melon-specific miRNA candidates, the identification of trans-acting siRNAs, and the identification of chloroplast, mitochondrion and transposon-derived sRNAs. In silico analysis revealed more than 400 potential targets for the conserved and novel miRNAs. Conclusion We have discovered and analysed a large number of conserved and melon-specific sRNAs, including miRNAs and their potential target genes. This provides insight into the composition and function of the melon small RNAome, and paves the way towards an understanding of sRNA-mediated processes that regulate melon fruit development and melon-virus interactions.This work was supported by grants AGL2009-07552/AGR, BIO2006-13107 (Ministerio de Ciencia e Innovación, Spain) and MELONOMICS (Fundación Genoma España, Spain).Peer Reviewe

    Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity

    Full text link
    [EN] tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2'-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA) signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response.This work was supported by the National Science Foundation of China (grant 31100268 to PC) and the Spanish MINECO (BFU2012 to PV) and Generalitat Valenciana (Prometeo2014/020 to PV). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Ramirez Garcia, V.; González-García, B.; López Sánchez, A.; Castelló Llopis, MJ.; Gil, M.; Zheng, B.; Cheng, P.... (2015). Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity. PLoS Genetics. 11(10):1-27. https://doi.org/10.1371/journal.pgen.1005586S127111

    Structure et évolution des ARNt mitochondriaux animaux

    No full text
    Les approches bioinformatiques développées au cours de cette thèse ont permis d une part le développement de banques de données concernant les ARNt classiques ainsi que les ARNt mitochondriaux de métazoaires. Celles-ci sont basées sur de nouveaux outils pour la détection de gènes d ARNt bizarres et des alignements de séquences basés sur les propriétés structurales préservées. Les analyses des séquences collectées ont conduit non seulement à une vision globale de la diversité des ARNt dans les génomes mitochondriaux couvrant l ensemble des groupes taxonomiques des métazoaires, mais également une meilleure connaissance de l organisation des génomes et d en proposer des liens évolutifs. Elles ont également permis de confirmer et d élargir l existence d ARNt les plus petits connus à ce jour et de poser les bases de compréhension des repliements tridimensionnaux des ARNt mitochondriaux. Ces travaux permettent de mieux appréhender la compréhension des relations structure/fonction des ARNt mitochondriaux humains, et en particulier les dysfonctionnements dans les pathologies mitochondriales.The bioinformatic approaches presented in this thesis include the development of databases for classical tRNAs and the mitochondrial tRNAs of metazoans. They are based on new tools for the detection of "bizarre" tRNA genes and sequences, and for the calculation of alignments based on their structural features. The analysis of collected sequences have led to an global overview on the diversity of tRNAs in mitochondrial genomes covering all taxonomic groups of metazoans, but also to a better understanding of genome organization and their evolution. The present study revealed the existence of the smallest known tRNA so far and provides the basis for understanding the three-dimensional folding of mitochondrial tRNA. This work helps to better understand the structure/function relationships of human mitochondrial tRNAs and, in particular, the dysfunctions in mitochondrial pathologies.STRASBOURG-Bib.electronique 063 (674829902) / SudocSudocFranceF
    corecore